Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
ACS Infect Dis ; 8(7): 1367-1375, 2022 07 08.
Article in English | MEDLINE | ID: covidwho-1908085

ABSTRACT

With the global pandemic of the new coronavirus disease (COVID-19), a safe, effective, and affordable mass-produced vaccine remains the current focus of research. Herein, we designed an adjuvant-protein conjugate vaccine candidate, in which the TLR7 agonist (TLR7a) was conjugated to S1 subunit of SARS-CoV-2 spike protein, and systematically compared the effect of different numbers of built-in TLR7a on the immune activity for the first time. As the number of built-in TLR7a increased, a bell-shaped reaction was observed in three TLR7a-S1 conjugates, with TLR7a(10)-S1 (with around 10 built-in adjuvant molecules on one S1 protein) eliciting a more potent immune response than TLR7a(2)-S1 and TLR7a(18)-S1. This adjuvant-protein conjugate strategy allows the built-in adjuvant to provide cluster effects and prevents systemic toxicity and facilitates the co-delivery of adjuvant and antigen. Vaccination of mice with TLR7a(10)-S1 triggered a potent humoral and cellular immunity and a balanced Th1/Th2 immune response. Meanwhile, the vaccine induces effective neutralizing antibodies against SARS-CoV-2 and all variants of concern (B.1.1.7/alpha, B.1.351/beta, P.1/gamma, B.1.617.2/delta, and B.1.1.529/omicron). It is expected that the adjuvant-protein conjugate strategy has great potential to construct a potent recombinant protein vaccine candidate against various types of diseases.


Subject(s)
COVID-19 , SARS-CoV-2 , Adjuvants, Immunologic/pharmacology , Adjuvants, Pharmaceutic , Animals , COVID-19/prevention & control , Humans , Mice , Mice, Inbred BALB C , Spike Glycoprotein, Coronavirus , Toll-Like Receptor 7 , Vaccines, Conjugate
2.
Chem Commun (Camb) ; 58(24): 3925-3928, 2022 Mar 22.
Article in English | MEDLINE | ID: covidwho-1730326

ABSTRACT

Adjuvants are important components in vaccines to increase the immunogenicity of proteins and induce optimal immunity. In this study, we designed a novel ternary adjuvant system Alum + c-GAMP + poly(I:C) with STING agonist 3,3'-c-GAMP (c-GAMP) and TLR3 agonist poly(I:C) co-adsorbed on the conventional adjuvant aluminum gel (Alum), and further constructed an S1 protein vaccine. Two doses of vaccination with the ternary adjuvant vaccine were sufficient to induce a balanced Th1/Th2 immune response and robust humoral and cellular immunity. Additionally, the ternary adjuvant group had effective neutralizing activity against live virus SARS-CoV-2 and pseudovirus of all variants of concern (alpha, beta, gamma, delta and omicron). These results indicate that the ternary adjuvants have a significant synergistic effect and can rapidly trigger potent immune responses; the combination of the ternary adjuvant system with S1 protein is a promising COVID-19 vaccine candidate.


Subject(s)
COVID-19 , SARS-CoV-2 , Adjuvants, Immunologic/pharmacology , Alum Compounds , Aluminum , Animals , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/pharmacology , Humans , Immunity, Cellular , Mice , Mice, Inbred BALB C , Poly I
SELECTION OF CITATIONS
SEARCH DETAIL